
Combining Wavelet statistical texture and recurrent neural network for tumour detection and classification over MRI
Author(s) -
Shaik Salma Begum,
AUTHOR_ID,
D. Rajya Lakshmi,
AUTHOR_ID
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.f9388.088619
Subject(s) - artificial intelligence , pattern recognition (psychology) , computer science , preprocessor , segmentation , noise (video) , feature extraction , wavelet , feature (linguistics) , artificial neural network , texture (cosmology) , image segmentation , computer vision , image (mathematics) , philosophy , linguistics
Brain tumor is one of the major causes of death among other types of the cancer because Brain is a very sensitive, complex and central part of the body. Proper and timely diagnosis can prevent the life of a person to some extent. Therefore, in this paper we have introduced brain tumor detection system based on combining wavelet statistical texture features and recurrent neural network (RNN). Basically, the system consists of four phases such as (i) feature extraction (ii) feature selection (iii) classification and (iii) segmentation. First, noise removal is performed as the preprocessing step on the brain MR images. After that texture features (both the dominant run length and co-occurrence texture features) are extracted from these noise free MR images. The high number of features is reduced based on sparse principle component analysis (SPCA) approach. The next step is to classify the brain image using Recurrent Neural Network (RNN). After classification, proposed system extracts tumor region from MRI images using modified region growing segmentation algorithm (MRG). This technique has been tested against the datasets of different patients received from muthu neuro center hospital. The experimentation result proves that the proposed system achieves the better result compared to the existing approaches.