
Optimal Placement and Capacity of UPFC using JMFALO Technique to Upgrade Power System Dynamic Stability
Author(s) -
Tarasi Madhuranthaka*,
T. Gowri Manohar
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.f9294.109119
Subject(s) - control theory (sociology) , unified power flow controller , electric power system , ac power , matlab , voltage , upgrade , power (physics) , computer science , dynamic demand , engineering , power flow , electrical engineering , physics , control (management) , quantum mechanics , artificial intelligence , operating system
This paper proposes an optimal placement and capacitance of UPFC for enhancing the dynamic stability of a power system using a new hybrid optimization technique. The hybrid optimization technique is the joined execution of both the moth flame optimization (MFO) and ant lion optimization (ALO) and hence it is named as Joined moth flame ant lion optimization (JMFALO) technique. Here, the MFO technique optimizes the maximum power loss line as the suitable location of the UPFC by considering the variation available in the bus system power flow parameters like voltage, angle, real power and reactive power. Dependent on the ALO technique the influenced location parameters and dynamic stability constraints are restored into secure limits utilizing the optimum capacity of the UPFC with least voltage deviation, loss of power, and reduced installation cost. Subsequently, to restore the dynamic stability constraints at a secure limit the optimized UPFC capacity is utilized. The dynamic stability constraint of the system is power balance constraint, active and reactive power loss, and UPFC installation cost and bus voltage constraints. The proposed technique is implemented in MATLAB/Simulink working platform. The performance of the proposed technique is assessed by utilizing the comparison analysis with the existing techniques.