z-logo
open-access-imgOpen Access
Nitrogen Deficiency Mobile Application for Rice Plant through Image Processing Techniques
Author(s) -
Geraldin B. Dela Cruz*
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.f8721.088619
Subject(s) - computer science , nitrogen deficiency , computer vision , digital camera , artificial intelligence , image processing , agricultural engineering , nitrogen , engineering , image (mathematics) , chemistry , organic chemistry
Driven by the opportunity that digital devices and robust information are readily available, the development and application of new techniques and tools in agriculture are challenging and rewarding processes. This includes techniques learned that is based on traditional methods, practices, experiences, environmental patterns and human capability. The most sought technique comes from human intelligence that is dynamic, adaptive and robust. Nitrogen deficiency in rice plants can be determined via the color of the leaves. It is dependent on the depth of the green pigment in the color spectrum present in the leaves. Based on these characteristics, the application of computational artificial intelligence and machine vision can be adopted to create assistive technologies for agriculture. In this paper, a mobile application is developed and implemented that can be used to assist rice farmers determine nitrogen deficiency, through the leaf color in rice plants. The application can be used alternatively or together with the traditional protocol of nitrogen fertilizer management. It is mobile, simple and it also addresses some drawbacks of the human eye to distinguish color depths brought about by other factors, like sunlight, shading, humidity, temperature, etc. It utilizes image processing techniques to digitally captured images represented in numerically transformed Red, Green, and Blue color formats. The digital images are then normalized to remove the effects of illumination and then compared using the image/pixel subtraction technique with the base color images converted and extracted from the leaf color chart standard. Eventually, the application determines nitrogen deficiency and suggests the concentration and volume of fertilizer to be applied to the rice plants. Accuracy of the technique is determined by computing the Z statistic score.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here