z-logo
open-access-imgOpen Access
Electromagnetic Compatibility Parameters of an Airborne Slot Antenna System
Author(s) -
Пичугин Александр Николаевич,
А. И. Солдатов,
N Ulyanov,
Majorova Nikolaevna
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.f8520.088619
Subject(s) - electromagnetic compatibility , acoustics , slot antenna , electromagnetic radiation , harmonics , radiator (engine cooling) , radiation pattern , radar , antenna (radio) , computer science , electronic engineering , engineering , optics , physics , electrical engineering , telecommunications , voltage
For the purpose of building extended surfaces in the long and short wave sections of the wavelength spectrum, it is deemed relevant to know the parameters of electromagnetic compatibility of airborne slot radiator antenna systems operating in the multi-wave receiving mode. One of the efficient research methods is to solve the problem of electromagnetic wave propagation in an infinitely extended slot radiator. The research purpose is to study the electromagnetic compatibility parameters of airborne slot radiator antenna systems operating in the multi-wave receiving mode. The main research methods were the statistical processing of the experimental data of tests in situ and mathematical description of the electromagnetic radar setting, as well as its computer simulation. The main result of the study can be formulated as the development of analytical and software methods for calculating the internal, external and equivalent conductivities of longitudinal and transverse slots on a wide wall of a rectangular waveguide of an antenna system at main frequency harmonics and at frequencies exceeding the main one, with account of slot width. We calculated the radiation characteristics of a slotted-waveguide antenna system at harmonics. The results of the study were used in the development of a universal technique for designing and developing radar systems capable of adequate functioning in the conditions of the electromagnetic setting under consideration. The results of the study will enable a more complete description of the electrodynamic pattern of wave propagation, making it possible to increase their generation and propagation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here