z-logo
open-access-imgOpen Access
Influence of Energy on Compaction Characteristics of High Expansive Soils
Author(s) -
Talal Masoud,
Manal O. Suliman
Publication year - 2020
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.e1114.069520
Subject(s) - compaction , expansive clay , soil water , water content , geotechnical engineering , atterberg limits , environmental science , moisture , dynamic compaction , soil science , proctor compaction test , volume (thermodynamics) , materials science , geology , composite material , physics , quantum mechanics
Each soil type has different behavior with regard to determination of maximum dry density and optimum moisture content and therefore any soil type has its own compaction requirements for experimental purposes and for control the compaction in the field. The general purpose of this study is to a better understanding of the compaction characteristics of high expansive soils, with emphasis on the relationships of moisture content and dry density of high expansive soils at a range of compaction energy levels. To achieve this purpose, high expansive soils samples were subjected to Atterberg limit and a set of laboratory compaction tests to find compaction characteristics namely; maximum dry unit weight and optimum water content of high expansive soils at different compaction energy (compaction effort) for different number of hammer blows per each layer range from 10 to 50, which varied the energy per unit volume from 356 KN/m3 to 1188 KN/m3.Rather than single peak compaction curves, the most achieved compaction curves are an irregular one and half peak compaction curves. According to the comparison results of different compaction energy, it was concluded that the maximum dry unit weight of high expansive soil was not highly affected by gradually increase of applied energy. The results showed that, the maximum dry density of tested expansive soils sample increased from 1.48g/cm3 to 1.6g/cm3 with increase of compaction energy from 356 KN/m3 to 1188 KN/m3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here