z-logo
open-access-imgOpen Access
Multimodel Image Segmentation and Classification by MAP based graph cut and Improved VGG16
Author(s) -
Jathin desan
Publication year - 2020
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.d7472.069520
Subject(s) - artificial intelligence , pattern recognition (psychology) , segmentation , computer science , contextual image classification , image segmentation , confusion , fuzzy logic , graph , image (mathematics) , psychology , theoretical computer science , psychoanalysis
Diagnosing brain diseases possess various inbuilt complexities to the nature of the diagnostic process. Brain tumor, Stroke, and Hemorrhage are the commonly prevailing disease and comprise more complexity in diagnosing where there arises the confusion in case of high grade or low-grade tumor and acute or sub-acute stroke. In general most of the prevailing algorithms is suited for the predicted of the image only employing the MRI or CT image. The paper mainly focused on the employment of a suitable proposed algorithm to adopt both the CT and MRI images for precise segmentation and classification. The segmentation algorithm is a map (map a posterior) based graph cut method The segmentation results are compared with the existing methods like (FCM) Fuzzy C Means and KFCM Kernel Fuzzy C Means and it is proved that our proposed system outperformed to the performance metrics. An improved VGG 16architecture is proposed for efficient classification. The overall classification results proved to be more efficient when compared with the existing R-CNN and NS-CNN methods. The paper focused on overcoming the difficulty and make a clear understanding of segmenting and classification irrespective of the nature of the diagnostic process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here