
Unsteady Flow of a Dusty Gas Through a Horizontal Pipe with Time Varying Pressure Gradient
Publication year - 2020
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijeat.c8012.019320
Subject(s) - pressure gradient , mechanics , exponential function , bessel function , velocity gradient , flow (mathematics) , physics , flow velocity , adverse pressure gradient , classical mechanics , optics , mathematics , mathematical analysis , turbulence , reynolds number
In the present paper, the unsteady flow of a dusty gas through a pipe under the effect of the linear and exponential pressure gradient is established. Firstly the equation of motion of the fluid and dust particles is considered and then converts it into the Bessel equation by introducing two different parameters. Using the solution of the Bessel equation, the velocity of the gas and dust particles is obtained and shown graphical representation.It is found that the velocities increases as one move towards the axis of the pipe. Under the linear pressure gradient, the velocity of the gas is greater than the velocity of dust particles. As time progresses velocity increases and under exponential pressure gradient the velocity of the dust particles is greater than the velocity of the gas. As time progresses velocity decreases.