
Twitter Sentiment Analysis using Machine Learning Techniques
Author(s) -
K. Sentamilselvan,
D. Aneri,
A. C. Athithiya,
Prajit K. Kumar
Publication year - 2020
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.c6281.029320
Subject(s) - naive bayes classifier , sentiment analysis , computer science , artificial intelligence , classifier (uml) , machine learning , logistic regression , support vector machine , random forest , natural language processing
Nowadays people share their views and opinions in twitter and other social media platforms, the way of recognizing sentiments and speculation in tweets is Twitter Sentiment Analysis. Determining the contradiction or sentiment of the tweets and then listing them into positive, negative and neutral tweets is the main classifying step in this process. The issue related to sentiment analysis is the naming of the correct congruous sentiment classifier algorithm to list the tweets. The foundation classifier techniques like Logistic regression, Naive Bayes classifier, Random Forest and SVMs are normally used. In this paper, the Naïve Bayes classifier and Logistic Regression has been used to perform sentiment analysis and classify based on the better accuracy of catagorizing Technique. The outcome shows that Naive Bayes classifier works better for this approach. Data pre-processing and feature extraction is realized as a portion of task.