
Detection of Tumor Cells in Brain using Cellular Automata with Image Segmentation and Edge Detection.
Publication year - 2019
Publication title -
international journal of soft computing and engineering
Language(s) - English
Resource type - Journals
ISSN - 2231-2307
DOI - 10.35940/ijeat.c3314.119419
Subject(s) - computer science , segmentation , edge detection , cellular automaton , image segmentation , artificial intelligence , enhanced data rates for gsm evolution , computer vision , pattern recognition (psychology) , image (mathematics) , image processing
Tumor growth or, growth of cancerous cells is a big challenge in today’s medical word. When dealing with human life, the detection of tumors through computers has to be highly accurate. Thus we require the assistance of computer in medical examinations, so that we will get very low rate of false cases. Brain tumor, in today’s world, is seen as most threatening and life taking disease. In order to detect brain tumor more accurately in lesser time, many techniques have already been proposed using image segmentation and edge detection. In our paper we propose a technique which is more efficient to detect brain tumor where edge detection through cellular automata have been used from Magnetic Resonance Imaging (MRI) scan images. It processes these images, and determines the area affected by using segmentation and edge detection with cellular automata. Simulated work is completed with the help of Simulink in MATLAB. Regarding this particular topic there are many studies, however our proposal of combination of both segmentation and edge detection through cellular automata shows better results as compared to combining segmentation with classical edge detection in term of computation time and clarity. This will help in efficiency of detecting brain tumor and later in its removal.