
Simulation of Hydrate Phase Boundary for Natural Gas Mixture with High CO2Content through Simulation
Author(s) -
Ali Qasim,
Muhammad Saad Khan,
Bhajan Lal,
Mohamad Zaki Abdullah,
Abdulhalim Shah Maulud
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.b4940.129219
Subject(s) - flow assurance , clathrate hydrate , hydrate , natural gas , methanol , chemistry , thermodynamics , ethylene glycol , phase (matter) , molecule , hydrogen bond , chemical engineering , organic chemistry , physics , engineering
Gas hydrates are solid crystalline structures in which water molecules trap small guest gas molecules and encage them through hydrogen bonding. Gas hydrates are known to be problematic in flow assurance applications as they can form plug inside the pipelines during oil and gas production, transportation and processing. In order to inhibit hydrate formation thermodynamically, various chemicals including some alcohols e.g. methanol (MeOH), mono- ethylene glycol (MEG) are used as thermodynamic hydrate inhibitors (THIs). In this paper, a simulation study is performed using PVTsim software wherein it predicts the hydrate formation for pure CO2 solution mixture and CO2-MEG solution mixture systems using different equation of states. These equations of states include Soave-Redlich-Kwong (SRK), SRK-Peneloux, Peng- Robinson (PR) and Peng-Robinson Peneloux. The simulation results obtained using these equation of states were validated with the experimental data and PR-PenelouxEoS was found to be in better agreement. The hydrate formation regions are determined in between the pressure range of 10 to 110 bara for natural gas mixture containing high percentage of CO2 in it. The inhibitors are used in 5, 10 and 20 wt% concentrations. The hydrate inhibition efficiency increased with the increase in concentration. Simulation results showed that methanol performed better in comparison to the other inhibitors at all concentrations.