z-logo
open-access-imgOpen Access
Design, Simulation and Experimental Analysis on Rectangular Microstrip Patch Antenna with Superstrates
Author(s) -
V. Saidulu
Publication year - 2020
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.b4671.029320
Subject(s) - hfss , materials science , dissipation factor , patch antenna , dielectric , return loss , microstrip antenna , standing wave ratio , antenna (radio) , microstrip , center frequency , acoustics , transmission line , optics , optoelectronics , electrical engineering , engineering , physics , band pass filter
This paper focuses on design, simulation and experimental analysis of rectangular MSA with and without superstrates. The rectangular MPA is designed at frequency range of 2.40 GHz, which is lying in the S band region. The transmission line model analysis and High Frequency Simulation Software (HFSS) is used for designing of proposed rectangular MPA. The proposed antenna is fabricated on Arlon diclad 880 substrate, whose dielectric constant is 2.2, thickness of the substrate is 1.6mm and loss tangent is 0.0009. In this paper the effect of dielectric superstrates on rectangular MPA and the height of superstrate are varying above the rectangular MPA is investigated experimentally and compared with simulated and measured results. The proposed antenna has been analyzed using different dielectric superstrates. From the study it was observed that in antenna without superstrate the VSWR is 1.21, return loss is -18.51dB, bandwidth is 0.038GHz. However, gain is 8.77dB. In the antennas with superstrates, center frequency is shifted from 2.40 GHz to 2.33 GHz as well as other parameters are slightly degraded. As superstrate height increases, the performance antenna is degraded and at particular optimum height the performance characteristics of antenna with and without superstrate will be same. The frequency range 2.40 GHz is used in wireless applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here