
IoT with Cloud Centric Vehicle Detection and Counting System for Smart Traffic Surveillance
Author(s) -
S. Saravanan,
K. Venkatachalapathy
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.b4255.129219
Subject(s) - computer science , cluster analysis , normalization (sociology) , real time computing , minimum bounding box , cloud computing , feature extraction , artificial intelligence , image (mathematics) , sociology , anthropology , operating system
The efficient management of road traffic is one primary facet of many, in smart cities. Traffic overcrowding can be managed successfully, if prior estimation of the number of vehicles that will pass though a crowded junction in a specific time is known. This paper introduces a methodology which targets vehicle extraction on videos covering vehicles. To resolve the problem of current vehicle detection such as the need of detection accuracy and slow speed, an improved YOLOv3 vehicle detection is utilized. The k-means clustering used to group the bounding box around the vehicle in training dataset. The method for calculation of loss with respect to the length and width of the bounding boxes was recovered through the implementation of the batch normalization process. Finally, to improve the feature extraction of the network the high repeated convolution layer are removed. The experiment results are carried out on the BIT-vehicle validation datasets which shows the improvement of mean Average Precision (mAP) could certainly reach 95.6%.