
Opinion Mining using Machine Learning Techniques
Author(s) -
*Nirmal Godara,
Sanjeev Kumar
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.b4108.129219
Subject(s) - machine learning , sentiment analysis , artificial intelligence , computer science , support vector machine , naive bayes classifier , decision tree , artificial neural network , precision and recall , the internet , data mining , world wide web
Sentiment analysis or opinion mining has gained much attention in recent years.With the constantly evolving social networks and internet marketing sites, reviews and blogs have been obtained among them, they act as an significant source for future analysis and better decision making. These reviews are naturally unstructured and thus require pre processing and further classification to gain the significant information for future use. These reviews and blogs can be of different types such as positive, negative and neutral . Supervised machine learning techniquess help to classify these reviews. In this paper five machine learning algorithms (K-Nearest Neighbors (KNN), Decision Tree, Artificial neural networks (ANNs), Naïve bayes and Support Vector Machine (SVM))are used for classification of sentiments. These algorithms are analyzed usingTwitter dataset. Performance analysis of these algorithms are done by using various performance measures such as Accuracy, precision, recall and F-measure. The evaluation of these techniques on Twitter datasetshowed predictive ability of Machine Learning in opinion mining.