Open Access
Reduction of Energy Hole in WSN
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.b3938.129219
Subject(s) - wireless sensor network , sink (geography) , computer network , computer science , concentric , energy (signal processing) , key distribution in wireless sensor networks , topology (electrical circuits) , wireless , telecommunications , electrical engineering , wireless network , physics , engineering , geometry , geography , mathematics , cartography , quantum mechanics
Energy hole problem in the wireless sensor network (WSN) is a critical issue due to the energy discharge of the sensor nodes in a rapid manner which lies closer to the sink. This is because of the fact that nearer sensor nodes send their own information as well as the information received from other regions to the sink. After sometime these sensor nodes start losing their power levels and become incapable to transfer data to sink and perform other activities despite the fact the energy of nodes in other regions are still unused which further disturbs the network performance. In this article, we have proposed a Concentric Layered Hexagonal Network Division Approach (CLHND) for solving energy hole issue. Initially, the network is divided into concentric hexagons and each hexagon act as a different layer. After that, each hexagon is divided into six equal portions. In the subsequent stage, the larger layer will be selected from all other layers. Now to decrease additional energy discharging from this layer, numerous sensor nodes positioned. In the final phase to prevent the energy hole issue, a suitable directing and ordering have been done which further improves network lifetime. The simulation results showed that the proposed CLHND approach has resolved the energy hole issue as compared to the existing techniques such as HRTBR and SEHP