z-logo
open-access-imgOpen Access
ECG Based Biometric using Wavelet Packet Decomposition
Author(s) -
Sugondo Hadiyoso,
Achmad Rizal,
Inung Wijayanto
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.a9699.109119
Subject(s) - biometrics , pattern recognition (psychology) , artificial intelligence , computer science , support vector machine , wavelet , feature extraction , entropy (arrow of time) , linear discriminant analysis , wavelet packet decomposition , waveform , speech recognition , wavelet transform , radar , telecommunications , physics , quantum mechanics
Biometric technology has been commonly used for authentication. Fingerprint or iris become one of the biometrics that is widely applied. However, this type of biometrics tends to be easily falsified and damaged. So it is misused for manipulating actions and even crime. Therefore a new biometric method is needed to overcome this problem. One potential modality is biometrics based on an electrocardiogram (ECG) signal. This research simulates a one-lead ECG waveform for person authentication. ECG waves were taken from eleven healthy adult volunteers with a length of 60 seconds. ECG waves from each person are segmented into 10 sections so that a total of 110 ECG waves are used for person authentication simulations. All noise of the ECG waves was removed using a bandpass filter to reduce artifacts and high-frequency noise. Wavelet packet decomposition (3 Level) was applied to decompose the signal in several intrinsic parts so that typical wave information can be retrieved. Entropy-based feature extraction applied to all decomposed signals. A total of 14 entropy features have been calculated and used as predictors in the classification process. Validation and performance tests are carried out by cross-validation combined with linear discriminant analysis and support vector machines with five scenarios. The proposed method provides the highest accuracy of 71.8% using discriminant analysis and cubic support vector machine. The best accuracy value was achieved if all entropy features from all wavelet decomposition levels are used as predictors in the classification process. This research is expected to be a reference that ECG has the potential to become a future biometric modality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here