z-logo
open-access-imgOpen Access
Minimizing False Negatives of Measles Prediction Model: An Experimentation of Feature Selection Based On Domain Knowledge and Random Forest Classifier
Author(s) -
Wan Muhamad Taufik Wan Ahmad,
Nur Laila Ab Ghani,
Sulfeeza Mohd Drus
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.a2640.109119
Subject(s) - random forest , feature selection , artificial intelligence , classifier (uml) , computer science , machine learning , domain knowledge , data mining , feature (linguistics) , pattern recognition (psychology) , philosophy , linguistics
In the context of disease prediction model, false negative error occurs when the patient is wrongly predicted as free from the disease.A prediction model development involves the process of data collection and feature selection which extracts relevant features from the dataset. Two commonly employed feature selection approaches are domain knowledge and data-driven, that suffer from bias towards past or current knowledge when applied alone.In this research, we have studied the developmentof measles prediction model by incorporating both the domain knowledge and the data-driven approaches, in particular, the Random Forest classifier.The domain expert has earlier on set the important features based uponhisprior knowledgeon measles for the purpose of minimizing the size of features. Afterward, the attributes became the input in Random Forest classifier and the least important attributes are excluded using the Mean Decrease Gini, in order to experiment its effect on the result. It is found that the removal ofseveral attributes after domain knowledge consultation can provide a good model with less false negative errors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here