z-logo
open-access-imgOpen Access
Energy Efficient Light Weight Security Algorithm for Low Power IOT Devices
Author(s) -
B. Nagajayanthi
Publication year - 2019
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.a1010.1291s319
Subject(s) - computer science , power analysis , embedded system , cryptography , encryption , computer network , algorithm
Internet of Things (IoT) is the state of art which connects, communicates, intelligently resolves and processes data between physical devices and smart phone or to a centralized server. Billions of users are centrally coordinated via the internet. The number of ubiquitous IoT devices will surpass the number of humans. For secured data transfer, IoT requires strenuous focus on security. Inspite of the secured IoT layered approach integrated in its architecture, yet they are susceptible to thwarting attacks. With proliferating applications and innovations, there is a stringent need to preserve user privacy and anonymize interactions using a lightweight cryptographic algorithm. Existing cryptographic algorithms have constraints on power, limited battery, real time execution, latency, code length and memory. In this research, initially comparison of the existing algorithms is made. Subsequently, Augmented Security and Optimized memory space is achieved for the data channelized via IoT by using the combination of the Light weight masked AES (Advanced Encryption Standard) and MD5 (Message Digest) hash algorithm. This chaining technique is implemented using VHDL Coding, Xilinx ISE and ModelSim 6.5 software tool. In the proposed algorithm, area, power and timing factors are reduced using optimization techniques, which drastically reduces the power consumed, and chip area. Chip area is calculated in terms of gate equivalents and power consumption is reduced through clock gating and operand isolation techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here