
The optimization of a jet turbojet engine by PSO and searching algorithms
Author(s) -
Sorush Niknamian
Publication year - 2021
Publication title -
journal of applied science, engineering, technology, and education
Language(s) - English
Resource type - Journals
ISSN - 2685-0591
DOI - 10.35877/454ri.asci3195
Subject(s) - exergy efficiency , turbojet , nozzle , gas compressor , brayton cycle , jet engine , exergy , automotive engineering , mechanical engineering , diffuser (optics) , engineering , turbine , process engineering , physics , light source , optics
The turbojet engine operates on the ideal Brayton cycle (gas turbine) and consists of six main parts: diffusers, compressors, combustion chambers, turbines, afterburners and nozzles. Using computer code writing in MATLAB software environment, exergy analysis on all selected turbojet engine components, exergy analysis on J85-GE-21 turbojet engine for selective height of 1000-8000 meters above sea level at speeds of 200 m/s and temperatures of 10°C, 20°C and 40°C have been provided and then, according to the system functions, the system is optimized based on the PSO method. For the purpose of optimization, variables of Mach number, efficiency of the compressor, turbine, nozzle and compressor pressure ratio are considered in the range of 0.6 to 1.4, 0.8 to 0.95, 0.8 to 0.95 and 7 to 10, respectively. The highest exergy efficiency of different parts of the engine at sea level with an inlet air velocity of 200 m/s corresponds to a diffuser with 73.1%. Then, the nozzle and combustion chamber are respectively 68.6% and 51.5%. The lowest exergy efficiency is related to compressor with 4%. After that, the afterburner is ranked second with 11.6%. Also, the values of entropy produced and the efficiency of the second law before optimization were 1176.99 and 479 w/k respectively and the same values after optimization were 1129 and 51.4 w/k respectively which is identified. After the optimization process, the amount of entropy produced is reduced and the efficiency of the second law of thermodynamics has increased.