
Um problema de navegação de Zermelo: Métrica de Funk
Author(s) -
Newton Mayer Solórzano Chávez,
V. León,
Luz Gisselle Quevedo Sosa,
Junior Rodrigues Moyses
Publication year - 2021
Publication title -
remat
Language(s) - Portuguese
Resource type - Journals
ISSN - 2447-2689
DOI - 10.35819/remat2021v7i1id4574
Subject(s) - humanities , funk , philosophy , unit (ring theory) , physics , mathematics , mathematics education , acoustics
O artigo aborda um modelo específico de Geometria Não-Euclidiana, cujo disco aberto unitário centrado na origem do plano cartesiano é dotado de uma métrica de Randers, que modela o Problema da navegação de Zermelo. Com isso, é gerada a "Geometria de Funk sobre o disco unitário", para qual a distância não é simétrica. Nesse sentido, o estudo apresenta as expressões para distância de ponto a ponto - de ponto a uma linha reta, e de uma linha reta a um ponto; e caracteriza as circunferências nesse tipo de geometria. Exemplos explícitos são incluídos.