z-logo
open-access-imgOpen Access
PENGGUNAAN TEORI KEKONGRUENAN DALAM MEMPERKECIL RUANG PENCARIAN SOLUSI PERSAMAAN DIOPHANTINE x^2 = y^3 + 2185
Author(s) -
Vone K Kadademahe,
Mans Mananohas,
Jullia Titaley
Publication year - 2019
Publication title -
jurnal ilmiah sains
Language(s) - Spanish
Resource type - Journals
eISSN - 2540-9840
pISSN - 1412-3770
DOI - 10.35799/jis.19.1.2019.22343
Subject(s) - diophantine equation , mathematics , combinatorics
 PENGGUNAAN TEORI KEKONGRUENAN DALAM MEMPERKECIL RUANG PENCARIAN SOLUSI PERSAMAAN DIOPHANTINE x2 = y3 + 2185ABSTRAKPada tahun 2014 Ulas mengajukan sebuah konjektur mengenai solusi bilangan bulat dari persamaan Diophantine tipe Ramanujan-Nagell x2 = y3 + 2185. Tujuan penelitian ini adalah untuk memperkecil ruang pencarian solusi persamaan Diophantine tipe Ramanujan- Nagell x2 = y3 + 2185 dengan x sub himpunan bilangan ganjil anggota G3 dan  G4, dimana G3={x∈bilangan ganjil |x≡1 mod 8} dan G4={x∈bilangan ganjil |x≡7 mod 8}   dengan metode membagi y menjadi 4 kasus, yaitu : FPB(y,8)=1, FPB(y,8)=2, FPB(y,8)=4, FPB(y,8)=8. Dari hasil penelitian menunjukkan bahwa untuk x∈G3 dengan FPB(y,8)=1,  FPB(y,8)=4, FPB(y,8)=8, tidak mempunyai solusi bilangan bulat, sedangkan untuk  FPB(y,8)=2 meskipun belum diperoleh kesimpulan akhir tapi ruang pencarian solusi telah berhasil diperkecil untuk x dan y dengan cara melakukan transformasi x=8b+1, y=4a – 2 , apabila a|b atau b|a, maka persamaan Diophantine x2 = y3 + 2185 hanya mempunyai satu pasang solusi, yaitu : (x,y)=(49,6), dan untuk x∈G4 dengan FPB(y,8)=1, FPB(y,8)=4, FPB(y,8)=8, FPB(y,8)=2 dengan melakukan transformasi x=8q+7, y=4p – 2  untuk p|q  atau q|p tidak mempunyai solusi bilangan bulat. Penelitian ini telah berhasil memperkecil ruang untuk x dan y.Kata kunci : Teorema Euler, Persamaan Diophantine, dan Diophantine Ramanujan - Nagell

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom