Open Access
PENGGUNAAN TEORI KEKONGRUENAN DALAM MEMPERKECIL RUANG PENCARIAN SOLUSI PERSAMAAN DIOPHANTINE x^2 = y^3 + 2185
Author(s) -
Vone K Kadademahe,
Mans Mananohas,
Jullia Titaley
Publication year - 2019
Publication title -
jurnal ilmiah sains/jurnal ilmiah sains
Language(s) - Spanish
Resource type - Journals
eISSN - 2540-9840
pISSN - 1412-3770
DOI - 10.35799/jis.19.1.2019.22343
Subject(s) - diophantine equation , mathematics , combinatorics
PENGGUNAAN TEORI KEKONGRUENAN DALAM MEMPERKECIL RUANG PENCARIAN SOLUSI PERSAMAAN DIOPHANTINE x2 = y3 + 2185ABSTRAKPada tahun 2014 Ulas mengajukan sebuah konjektur mengenai solusi bilangan bulat dari persamaan Diophantine tipe Ramanujan-Nagell x2 = y3 + 2185. Tujuan penelitian ini adalah untuk memperkecil ruang pencarian solusi persamaan Diophantine tipe Ramanujan- Nagell x2 = y3 + 2185 dengan x sub himpunan bilangan ganjil anggota G3 dan G4, dimana G3={x∈bilangan ganjil |x≡1 mod 8} dan G4={x∈bilangan ganjil |x≡7 mod 8} dengan metode membagi y menjadi 4 kasus, yaitu : FPB(y,8)=1, FPB(y,8)=2, FPB(y,8)=4, FPB(y,8)=8. Dari hasil penelitian menunjukkan bahwa untuk x∈G3 dengan FPB(y,8)=1, FPB(y,8)=4, FPB(y,8)=8, tidak mempunyai solusi bilangan bulat, sedangkan untuk FPB(y,8)=2 meskipun belum diperoleh kesimpulan akhir tapi ruang pencarian solusi telah berhasil diperkecil untuk x dan y dengan cara melakukan transformasi x=8b+1, y=4a – 2 , apabila a|b atau b|a, maka persamaan Diophantine x2 = y3 + 2185 hanya mempunyai satu pasang solusi, yaitu : (x,y)=(49,6), dan untuk x∈G4 dengan FPB(y,8)=1, FPB(y,8)=4, FPB(y,8)=8, FPB(y,8)=2 dengan melakukan transformasi x=8q+7, y=4p – 2 untuk p|q atau q|p tidak mempunyai solusi bilangan bulat. Penelitian ini telah berhasil memperkecil ruang untuk x dan y.Kata kunci : Teorema Euler, Persamaan Diophantine, dan Diophantine Ramanujan - Nagell