
STATE OF THE ART OF TANK STRUCTURAL EVALUATION REVIEW: A CASE STUDY OF AN ELEVATED CONCRETE WATER TANK CONCERNING CRACK INITIATION
Author(s) -
Taufiq Rochman,
Suhariyanto
Publication year - 2021
Publication title -
xi'nan jiaotong daxue xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.308
H-Index - 21
ISSN - 0258-2724
DOI - 10.35741/issn.0258-2724.56.5.9
Subject(s) - slab , structural engineering , deflection (physics) , shrinkage , diagonal , serviceability (structure) , durability , roof , beam (structure) , concrete cover , hammer , geotechnical engineering , engineering , flexural strength , reinforced concrete , materials science , composite material , physics , geometry , mathematics , optics
This study aims at the structural evaluation of the elevated concrete water tank condition, including crack initiation, through nondestructive testing. The growing demands for environmental quality have resulted in a rise in the design and construction of tanks and reservoirs in the construction industry. Cracks for water line leakage were found during watertight testing in concrete tanks. Long-term liquid leaking may permanently damage the tank and can contaminate the groundwater. Given the critical existence of leaked cracks in tank serviceability and durability, the contribution examines the triggers and effects of their occurrence. An inspection of the existing water tank system is conducted to ascertain its condition. The investigation included structural design checks, concrete compressive strength tests, visual assessments, hammer inspections, and Ultrasonic Pulse Velocity (UPV) testing with Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT). This observation is made at many elevations on various sampling points on the tank structure's elements, including columns, beams, tank floor slabs, and tank wall shells. The results indicate the presence of flexural type cracks in the main beam's middle span and diagonal beams. Additionally, cracks attributed to long-term drying shrinkage were discovered on the diagonal of the floor slab and cracks of the same pattern on the main beam's middle span. The deflection estimated by structural remodeling was larger than the deflection estimated by design. The computed crack width in the main and diagonal beam exceeds the acceptable crack width.