
A PROPOSED RECOGNITION SYSTEM FOR ALZHEIMER’S DISEASE BASED ON DEEP LEARNING AND OPTIMIZATION ALGORITHMS
Author(s) -
Shereen A. El-aal,
Neveen I. Ghali
Publication year - 2021
Publication title -
xi'nan jiaotong daxue xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.308
H-Index - 21
ISSN - 0258-2724
DOI - 10.35741/issn.0258-2724.56.5.22
Subject(s) - computer science , artificial intelligence , convolutional neural network , classifier (uml) , binary classification , pattern recognition (psychology) , deep learning , algorithm , residual neural network , machine learning , optimization algorithm , support vector machine , mathematics , mathematical optimization
Alzheimer's disease (AD) is an advanced and incurable neurodegenerative disease that causes progressive impairment of memory and cognitive functions due to the deterioration of brain cells. Early diagnosis is substantial to avoid permanent memory loss and develop treatments that will be subtracted in the future. Deep learning (DL) is a vital technique for medical imaging systems for AD diagnostics. The problem is multi-class classification seeking high accuracy. DL models have shown strong performance accuracy for multi-class prediction. In this paper, a proposed DL architecture is created to classify magnetic resonance imaging (MRI) to predict different stages of AD-based pre-trained Convolutional Neural Network (CNN) models and optimization algorithms. The proposed model architecture attempts to find the optimal subset of features to improve classification accuracy and reduce classification time. The pre-trained DL models, ResNet-101 and DenseNet-201, are utilized to extract features based on the last layer, and the Rival Genetic algorithm (RGA) and Pbest-Guide Binary Particle Swarm Optimization (PBPSO) are applied to select the optimal features. Then, the DL features and selected features are passed separately through created classifier for classification. The results are compared and analyzed by accuracy, performance metrics, and execution time. Experimental results showed that the most efficient accuracies were obtained by PBPSO selected features which reached 87.3% and 94.8% accuracy with less time of 46.7 sec, 32.7 sec for features based ResNet-101 and DenseNet-201, receptively.