
Comparison of Seismocardiography Based Heart Rate Measurement Method
Author(s) -
Bayu Erfianto,
Achmad Rizal,
Vera Suryani
Publication year - 2020
Publication title -
xi'nan jiaotong daxue xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.308
H-Index - 21
ISSN - 0258-2724
DOI - 10.35741/issn.0258-2724.55.6.12
Subject(s) - heartbeat , inertial measurement unit , hilbert–huang transform , fiducial marker , jerk , computer science , signal (programming language) , filter (signal processing) , artificial intelligence , physics , computer vision , computer security , classical mechanics , acceleration , programming language
The article describes a new alternative method of detecting the Aorta Open fiducial point based on digital signal processing formulated from the average seismocardiogram cycle obtained from the 6-degree-of-freedom Micro Electro-Mechanical Systems Inertial Measurement Unit, enabling estimation of heartbeat during heart muscle contraction without reference to electrocardiogram time period. Using the seismocardiography data obtained from the Inertial Measurement Unit, the authors then process the data using two methods: 1) Empirical Mode Decomposition and 2) Jerk signal, which is extracted as a first derivative of the Inertial Measurement Unit signal. As an example, we compare the two proposed methods to the existing method. Our Method 2 allows us to detect Aorta Open-Aorta Open value between 400ms and 450ms using Berkeley Packet Filter 5-15 Hz with dynamic peak threshold from the Hilbert envelope. Thus, the evaluation of the new method’s effectiveness is confirmed by the estimation of the Aorta Open-Aorta Open fiducial point as closer to the reference. Therefore, the result of our research, especially using jerk signal, can be considered a more accurate alternative for estimating heart rate or heartbeat based on seismocardiogram.