
A Double Nozzle Cross Flow Turbine Fluid Flow Dynamics
Author(s) -
Corvis L Rantererung,
Sudjito Soeparman,
Rudy Soenoko,
Slamet Wahyudi
Publication year - 2020
Publication title -
xi'nan jiaotong daxue xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.308
H-Index - 21
ISSN - 0258-2724
DOI - 10.35741/issn.0258-2724.55.4.49
Subject(s) - nozzle , turbine , flow (mathematics) , water turbine , wells turbine , mechanical engineering , turbine blade , mechanics , computational fluid dynamics , fluid dynamics , marine engineering , materials science , engineering , physics
The dynamics of fluid flow are very important to the process of converting water energy into mechanical energy at the nozzle double runner cross flow turbine blade. Fluid dynamics of a jet of water from a nozzle release energy as the water crosses the cross flow turbine runner. This research aims to improve turbine performance and the effectiveness of fluid flow dynamics that drive cross flow turbine runner blades using double nozzles. The method of research using a cross flow turbine with double nozzle is a combination of vertical and horizontal nozzles. The turbine runner casing and blade are made of transparent acrylic material so that the flow dynamics can be observed directly. The laboratory scale double nozzle cross flow turbine is comprised of 24 blades, 3 mm thick, 40 mm long and 200 mm runner blade diameter. Test the performance of the turbine by measuring rotation, torque, and power, and by photographing the dynamics of the fluid flow that drives the turbine runner blade. The results of the study found that the visualization of the dynamics of fluid flow in turbines with double nozzles is more regular, evenly distributed, focused, and directed, moving the turbine runner blade cross flow so as to be able to increase turbine performance higher. The highest double nozzle cross flow turbine performance is 6.04 Watt power and 81.68% efficiency, at a water discharge of 0.22 liters /s.