
Laser Surface Treatment Effect on Structural Properties for Invar Alloy Type Prepared by Powder Technology
Author(s) -
Omar Fadhil Abdullah,
Orass Abdulhadi Hussein,
Rasha Wael Koleab
Publication year - 2020
Publication title -
xi'nan jiaotong daxue xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.308
H-Index - 21
ISSN - 0258-2724
DOI - 10.35741/issn.0258-2724.55.2.14
Subject(s) - materials science , invar , alloy , laser , grain size , metallurgy , nickel , diffraction , composite material , optics , physics
This research aimed to prepare iron-nickel alloys via powder technology, because this technology has its physical and commercial importance. Fe and Ni powders were blended into a mixture that was 63% Fe and 37% Ni and then compacted under 6 tons of isostatic cold pressure. Iron and nickel powders were used as tacking mixed together (63% of iron and 37% of nickel), and then compacted isostatic cold pressure at 6 tons. Laser surface treatment was done to samples with different energies (0, 200, 260, and 300 mJ) at a pulse time of 10 seconds and a distance of 100 cm. The x-ray diffraction test indicated that all samples had face-centered cubic, and according to the Debye-Scherrer equation. the 300 mJ sample had the best properties, including increased phase intensity and decreased grain size. The atomic force microsope showed that increasing laser energy also decreased grain size and increased surface softness and homogeneity. laser treatment results indicated an improved in structural properties with increased laser energy, Laser analysis revealed that melting all surface molecules improved structural properties. Specifically, the last treatment (300 mJ) acheaved the best structural properties of the alloy.