z-logo
open-access-imgOpen Access
On totally global solvability of evolutionary equation with unbounded operator
Author(s) -
А. В. Чернов
Publication year - 2021
Publication title -
vestnik udmurtskogo universiteta. matematika, mehanika, kompʹûternye nauki
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 8
eISSN - 2076-5959
pISSN - 1994-9197
DOI - 10.35634/vm210212
Subject(s) - mathematics , bounded function , operator (biology) , banach space , hilbert space , cauchy problem , domain (mathematical analysis) , bounded operator , space (punctuation) , lambda , pure mathematics , initial value problem , mathematical analysis , discrete mathematics , combinatorics , physics , biochemistry , chemistry , linguistics , philosophy , repressor , transcription factor , optics , gene
Let $X$ be a Hilbert space, $U$ be a Banach space, $G\colon X\to X$ be a linear operator such that the operator $B_\lambda=\lambda I-G$ is maximal monotone with some (arbitrary given) $\lambda\in\mathbb{R}$. For the Cauchy problem associated with controlled semilinear evolutionary equation as follows\[x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr),\quad t\in[0;T];\quad x(0)=x_0\in X,\]where $u=u(t)\colon[0;T]\to U$ is a control, $x(t)$ is unknown function with values in $X$, we prove the totally (with respect to a set of admissible controls) global solvability subject to global solvability of the Cauchy problem associated with some ordinary differential equation in the space $\mathbb{R}$. Solution $x$ is treated in weak sense and is sought in the space $\mathbb{C}_w\bigl([0;T];X\bigr)$ of weakly continuous functions. In fact, we generalize a similar result having been proved by the author formerly for the case of bounded operator $G$. The essence of this generalization consists in that postulated properties of the operator $B_\lambda$ give us the possibility to construct Yosida approximations for it by bounded linear operators and thus to extend required estimates from “bounded” to “unbounded” case. As examples, we consider initial boundary value problems associated with the heat equation and the wave equation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here