z-logo
open-access-imgOpen Access
Model Regresi Semiparametrik Spline untuk D ata Longitudinal pada Kasus Demam Berdarah Dengue di Kota Makassar
Author(s) -
Syafruddin Side,
Wahidah Sanusi,
Mustati'atul Waidah Maksum
Publication year - 2021
Publication title -
jmathcos/jmathcos (journal of mathematics, computation, and statistics)
Language(s) - English
Resource type - Journals
eISSN - 2721-0863
pISSN - 2476-9487
DOI - 10.35580/jmathcos.v3i1.19181
Subject(s) - mathematics , statistics , medicine
Abstrak. Regresi semiparametrik merupakan model regresi yang memuat komponen parametrik dan komponen nonparametrik dalam suatu model. Pada penelitian ini digunakan model regresi semiparametrik spline untuk data longitudinal dengan studi kasus penderita Demam Berdarah Dengue (DBD) di Rumah Sakit Universitas Hasanuddin Makassar periode bulan  Januari sampai bulan Maret 2018. Estimasi model regresi terbaik didapat dari pemilihan titik knot optimal dengan melihat nilai Generalized Cross Validation (GCV) dan Mean Square Error (MSE) yang minimum. Komponen parametrik pada penelitian ini adalah hemoglobin (g/dL) dan umur (tahun), suhu tubuh ( ), trombosit ( ) sebagai komponen nonparametrik dengan nilai GCV minimum sebesar 221,67745153 dicapai pada titik knot yaitu 14,552; 14,987; dan 15,096; nilai MSE sebesar 199,1032; dan nilai koefisien determinasi sebesar 75,3% yang diperoleh dari model regresi semiparametrik spline linear dengan tiga titik knot..Kata Kunci: regresi semiparametrik, spline, knot, Generalized Cross Validation, Demam Berdarah Dengue.Abstract. Semiparametric regression is a regression model that includes parametric and nonparametric components in it. The regression model in this research is spline semiparametric regression with case studies of patients with Dengue Hemorrahagic Fever (DHF) at University of Hasanuddin Makassar Hospital during the period of January to March 2018. The best regression model estimation is obtained from the selection of optimal knot which has minimum Generalized Cross Validation (GCV) and Mean Square Error (MSE). Parametric component in this research is hemoglobin (g/dL) and age (years), body temperature ( ), platelets ( ) as a nonparametric components. The minimum value of GCV is 221,67745153 achieved at the point 14,552; 14,987; and 15,096 knot; MSE value of 199,1032; and the value of coefficient determination is 75,3% obtained from semiparametric regression model linear spline with third point of knots.Keywords: semiparametric regression, spline, knot, Generalized Cross Validation, Dengue Hemorrahagic Fever.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here