z-logo
open-access-imgOpen Access
Model Regresi Spasial dan Aplikasinya dalam Menganalisis Angka Putus Sekolah Usia Wajib Belajar di Provinsi Sulawesi Selatan
Author(s) -
Wahidah Sanusi,
Hisyam Ihsan,
Nur Hikmayanti Syam
Publication year - 2019
Publication title -
jmathcos/jmathcos (journal of mathematics, computation, and statistics)
Language(s) - English
Resource type - Journals
eISSN - 2721-0863
pISSN - 2476-9487
DOI - 10.35580/jmathcos.v1i2.9241
Subject(s) - geography
Abstrak. Penduduk Sulawesi Selatan pada kelompok pengeluaran terendah menunjukkan bahwa banyak dari mereka mengalami putus sekolah. Salah satu faktor yang mempengaruhi angka putus sekolah yaitu lokasi antar wilayah. Tujuan penelitian ini adalah untuk mengaplikasikan regresi spasial untuk memodelkan angka putus sekolah di Provinsi Sulawesi Selatan. Pengujian dependensi spasial dan pemilihan model regresi spasial dilakukan menggunakan uji Moran’s I dan Langrange Multiplier (LM). Dari hasil penelitian, kasus putus sekolah untuk tingkat SMP tidak memiliki dependensi spasial baik dalam lag maupun error dan berdasarkan model regresi klasiknya diperoleh variabel prediktor yang signifikan mempengaruhi variabel respon adalah jumlah penduduk miskin . Sedangkan untuk kasus angka putus sekolah tingkat SMA, diperoleh dependensi spasial dalam error sehingga model regresi spasial yang digunakan adalah Spatial Error Model (SEM) dan matriks pembobotnya adalah queen contiguity. Matriks pembobot tersebut menggambarkan ukuran kedekatan antar wilayah pengamatan. Hasil analisis spasial menunjukkan bahwa variabel prediktor yang signifikan mempengaruhi variabel respon adalah jumlah penduduk miskin  dan kepadatan penduduk , dengan nilai  89,78% dan AIC =  430,604.Kata Kunci: Langrange Multiplier, Moran’s I, Putus Sekolah, Regresi Spasial, Spatial Error Model (SEM).  Abstract. The population of South Sulawesi in the lowest expenditure group shows that many of them have dropped out of school. One of the factors that influence the drop out rate is location between regions. The purpose of this study was applying spatial regression to the model drop out rates in South Sulawesi Province. Spatial dependency test and spatial regression model selection were performed using Moran's I and Langrange Multiplier (LM) tests. From the results of the study, the drop out case for junior high school didn’t have spatial dependencies either in lag or error and based on the classical regression model obtained predictor variable significantly affect the response variable was the number of poor people . As for the case of high school drop out rate, obtained spatial dependency in error so that spatial regression model used was Spatial Error Model (SEM) and weighting matrix was queen contiguity. The weighted matrix represents the measure of proximity between observation areas. The result of spatial analysis indicates that the significant predictor variable influencing the response variable was the number of the poor  and the population density , with  = 89.78% and AIC = 430,604.Keywords: Lagrange Multiplier, Moran's I, School Drop Out, Spatial Regression, Spatial Error Model (SEM).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here