z-logo
open-access-imgOpen Access
Sintesis dan karakterisasi komposit polipropilena/silika berbasis abu ampas tebu
Author(s) -
Idra Herlina,
Yulistia Anggraini,
Edwin Rizki Safitra
Publication year - 2022
Publication title -
journal of science and applicative technology
Language(s) - English
Resource type - Journals
ISSN - 2581-0545
DOI - 10.35472/jsat.v6i1.766
Subject(s) - materials science , bagasse , composite material , composite number , silica gel , polypropylene , yield (engineering) , nuclear chemistry , chemistry , ecology , biology
Polypropylene/sugarcane bagasse silica (PP/SiO2) composites have been synthesized. The sol gel method with 1 M NaOH was used to synthesize silica from bagasse ash. The results showed that the silica yield was 52.8%. The resulting silica was blended with polypropylene with a mass ratio variation of 1:5, 1:10, 1:15, 1:20, and 1:25 to obtain PP/SiO2 composites. Composites in variations of 1:5 and 1:10 produce fragile plastic, whereas composites in variations 1:15, 1:20, and 1:25 produce strong and homogeneous plastic. The water resistance test showed that PP/SiO2 with variations of 1:15, 1:20,and 1:25 had good water resistance (> 94%), whereas variations of 1:5 and 1:10, the resistance to water dropped to 80-87%. FT-IR was used to characterize polypropylene, silica synthesized from bagasse ash, and PP/SiO2 composites (1:25) to observe functional group changes. FT-IR analysis showed that silica was successfully synthesized from bagasse ash. This is indicated by a band that widened at a wavenumber of 3400-3600 cm-1, which is characteristic of the O-H strain on water. This band is confirmed by a band with a wavenumber of 1660 cm-1 which is a bend in the O-H in a water molecule. Other silica characteristics can be seen in bands with wavenumbers of 1075 cm-1 and 950 cm-1, which are strains of Si-O, and bands with a wavenumber of 460 cm-1, which is a bend of Si-O. The spectra of polypropylene and PP/SiO2 were also similar. The similarity between the polypropylene and PP/SiO2 spectra indicates that SiO2 spreads homogeneously in polypropylene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here