
A mesh-free approach to cornea-aqueous humor interaction during tonometry tests
Author(s) -
Andrea Montanino,
Maurizio Angelillo,
Anna Pandolfi
Publication year - 2018
Publication title -
journal for modeling in ophthalmology
Language(s) - English
Resource type - Journals
eISSN - 2468-3930
pISSN - 2468-3922
DOI - 10.35119/maio.v2i2.75
Subject(s) - cornea , isotropy , aqueous humor , newtonian fluid , discretization , materials science , ophthalmology , biomedical engineering , mechanics , optics , physics , mathematics , engineering , medicine , mathematical analysis
The dynamic tonometer test (air-puff test) is an in-vivo investigative procedure routinely utilized in ophthalmology to estimate the intraocular pressure (IOP). A rapid, localized air jet applied on the anterior surface induces the inward motion of the cornea, which interacts with the aqueous humor — filling the narrow space between cornea and iris — and has a strong influence on corneal dynamics. Potentially, this quick and painless test could be combined with inverse analysis methods to characterize the patient-specific mechanical properties of the human cornea. As a step towards this aim, the present study describes a fluid-structure interaction (FSI) approach based on a simplified geometry to simulate the anterior chamber of the eye undergoing the air-puff test. We regard the cornea as a non-linear, elastic, and isotropic membrane described through an analytical model, discretizing the weakly compressible Newtonian fluid with a mesh-free particle approach. Numerical analyses reveal a marked influence of the fluid on corneal dynamics. Additionally, we investigate the possibility of using the test dynamics to estimate IOP.