Computational corneal biomechanics in the clinic
Author(s) -
Miguel Ángel Ariza-Gracia,
David Pablo Piñero Llorens,
Jose Félix Rodríguez Matas,
Begoña Calvo
Publication year - 2018
Publication title -
modeling and artificial intelligence in ophthalmology
Language(s) - English
Resource type - Journals
eISSN - 2468-3930
pISSN - 2468-3922
DOI - 10.35119/maio.v2i2.70
Subject(s) - biomechanics , cornea , a priori and a posteriori , finite element method , computer science , simulation , medicine , engineering , ophthalmology , structural engineering , physiology , philosophy , epistemology
Corneal topographers and air-puff devices aim at completely characterizing so-called corneal biomechanics, a collection of features that describes corneal behavior. The European FP7 project (PopCorn) was born with the goal of integrating both technologies. Among the novelties, computational models were included as an integral part of the clinical assessment. Automatic patient-specific (P-S) reconstruction of the cornea, alongside material prediction based on finite element simulations, optimization, and fitting were used to strive forward in a priori surgical planning. Both methodologies show good performance in retrieving the P-S geometry of the cornea (error < 1%) and the maximum deformation amplitude of a non-contact tonometry (error ~ 5%). Nevertheless, physiological and non-physiological corneas cannot be classified solely in terms of material, at least with a single experiment. Eventually, and due to the interplay of different factors (geometry, material, and pressure), results coming from air-puff devices should be handled with care.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom