z-logo
open-access-imgOpen Access
Dynamical characteristics of microvascular networks with a myogenic response gradient
Author(s) -
Anastasiia Y. Neganova
Publication year - 2017
Publication title -
journal for modeling in ophthalmology
Language(s) - English
Resource type - Journals
eISSN - 2468-3930
pISSN - 2468-3922
DOI - 10.35119/maio.v1i4.45
Subject(s) - myogenic contraction , pressure gradient , contraction (grammar) , vasomotor , mechanics , upstream (networking) , anatomy , smooth muscle , physics , biology , computer science , telecommunications , endocrinology
Purpose: Myogenic response is the ability of smooth muscle cells lining the vascu-lar wall to react to changing intravascular pressure: increasing pressure normallyinduces contraction whereas decreasing pressure leads to dilatation. Experimentalstudies show that the intensity of the myogenic response is dierent in arteriolarvessels of dierent radii: smaller arterioles react relatively more intensely, but overa more narrow range of pressures, than larger arterioles. In a network of vessels,this gives rise to a myogenic response gradient. The physiological significance of this gradient is, nonetheless, debated. Our purpose is to investigate the dynamical characteristics of microvascular networks with a myogenic response gradient by means of mathematical modeling.Methods: We present a mathematical vascular network model which includes a de-tailed description of vessel wall mechanics and the myogenic response gradient. Wefocus on the influence of this gradient on short-term network dynamics. We performa series of numerical simulations in both symmetrical and asymmetrical vasculartrees in which the individual vessel is given a realistic morphology, i.e., relative wallthickness is smaller in larger vessels.Results: Our main findings show that the presence of a myogenic response gradient:1. adjusts flow and pressure in the capillary bed to an adequate level and dampensoscillations transmitted from upstream feeding vessels;2. provides the network as a whole with a basal level of tone necessary for theoperation of vasomotor mechanisms other than the myogenic response; and3. provides the system with the overall ability to autoregulate network flowsmoothly.Conclusion: The mathematical model shows that networks with a myogenic response gradient present advantages regarding the physiological function of regulating flow in a bifurcating network compared to networks without myogenic response and passive networks

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here