
P*-Skew-Bi-Normal Operator on Hilbert Space
Author(s) -
Alaa Hussein Mohammed
Publication year - 2022
Publication title -
earthline journal of mathematical sciences
Language(s) - English
Resource type - Journals
ISSN - 2581-8147
DOI - 10.34198/ejms.9222.229235
Subject(s) - skew , mathematics , operator space , hilbert space , operator (biology) , weak operator topology , multiplication operator , compact operator , pure mathematics , unitary operator , discrete mathematics , finite rank operator , physics , computer science , banach space , chemistry , extension (predicate logic) , biochemistry , repressor , astronomy , transcription factor , gene , programming language
In this paper we introduce an operator on Hilbert space H called P^*-skew-bi-normal operator. An operator L is called P^*-skew-bi-normal operator if and only if (L^* LLL^* ) 〖〖(L〗^*)〗^P=〖〖(L〗^*)〗^P (〖LL〗^* L^* L), where Ρ is a nonnegative integer. New theorems and properties are given on Hilbert space H.