z-logo
open-access-imgOpen Access
НЕСТАНДАРТНА МОДЕЛЬ ТРИКУТНОГО СКІНЧЕННОГО ЕЛЕМЕНТА Т7
Author(s) -
A. N. Khomchenko,
Олена Іванівна Литвиненко,
Ігор Олександрович Астіоненко
Publication year - 2020
Publication title -
sistemnì tehnologìï
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2707-7977
pISSN - 1562-9945
DOI - 10.34185/1562-9945-5-130-2020-05
Subject(s) - computer science
У роботі розглянуто трикутник Т7, який має сім вузлів (три вузли у вершинах, три вузли на серединах сторін і один вузол у барицентрі). В математиці Т7 використовують у якості обчислювального шаблона для наближеного інтегрування у трикутних областях. Зустрічається трикутник Т4, який також використовують у якості обчислювального шаблону. Між іншим, трикутник (двовимірний симплекс) – невичерпне джерело нових результатів. Засновник сучасного і дуже ефективного методу скінченних елементів (MCЕ) Р. Курант реалізував свої геніальні ідеї саме на трикутниках (трикутник Куранта, комірка Куранта). Але не всі трикутники здатні виконувати подвійну роль: обчислювального шаблона і скінченного елемента. До скінченних елементів вимоги більш жорсткі, наприклад, залежність між порядком елемента і кількістю вузлів, необхідних для поліноміальної інтерполяції. Ось чому серед трикутних СЕ зустрічаються тільки члени арифметичного ряду «трикутних» чисел Піфагора: Т3, Т6, Т10... Ми переконалися, що Т7, як і стандартний Т10, може виконувати подвійну роль, а порушення міжелементної неперервності (несумісність) на границі з трикутним Т6 або квадратним Q8 не має небажаних наслідків. Модель Т7 успішно витримує кускове тестування. При цьому «дута» мода Т7 відкриває можливості генерувати шляхом конденсації безліч альтернативних моделей Т6.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here