
An Investigation of Post-radiation Gene Expression Profiles: A System Biology Study
Author(s) -
Reza Vafaee,
Abdolrahim Nikzamir,
Mohammad Reza Razzaghi,
Sina Rezaei Tavirani,
Arman Ahmadzadeh,
Mohammad Ali Emamhadi
Publication year - 2020
Publication title -
journal of lasers in medical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.443
H-Index - 21
eISSN - 2228-6721
pISSN - 2008-9783
DOI - 10.34172/jlms.2020.s16
Subject(s) - gene , computational biology , biological pathway , gene expression , systems biology , medicine , cancer research , biology , bioinformatics , genetics
Genomics and bioinformatics are useful methods for exploring unclear aspects of radiation effects on biological systems. Many radiation-induced alterations in irradiated samples are post-radiation time-dependent. This study aims to evaluate the post-irradiation effects of the gamma ray on human Jurkat cells. Methods: Gene expression profiles of the samples harvested 6 and 24 hours after radiation to find the critical differential expressed genes and the related pathways. Samples are provided from Gene Expression Omnibus (GEO) and analyzed by ClueGO. Results: Twnety-nine critical genes were determined as the important affected genes and 7 classes of related pathways were introduced. CCNE2, PSMD11, CDC25C, ANAPC1, PLK1, AURKA, and CCNB1 that were associated with more than 6 pathways were related to one of the determined pathway groups. Conclusion: Cell protecting pathways were associated with the genes (HSPA5, HSPA8, HSP90B1, HMMR, CEBPB, RXRA, and PSMD11) which were related to the minimum numbers of pathways. The finding of this study corresponds to repair processes which depend on post-radiation time. It seems these sets of genes are suitable candidates for further investigation.