z-logo
open-access-imgOpen Access
Artificial Generation of High Harmonics via Nonrelativistic Thomson Scattering in Metamaterial
Author(s) -
Yongzheng Wen,
Ji Zhou
Publication year - 2019
Publication title -
research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.8
H-Index - 16
ISSN - 2639-5274
DOI - 10.34133/2019/8959285
Subject(s) - harmonics , high harmonic generation , physics , thomson scattering , scattering , anharmonicity , nonlinear system , metamaterial , harmonic , nonlinear optics , computational physics , laser , optics , quantum mechanics , voltage
High harmonic generation allows one to extend the frequency of laser to a much broader regime and to study the electron dynamics of matters. However, severely limited by the vague high-order process in natural material and the unfriendly state of the commonly applied gas and plasma media, the ambitious goal of custom-design high harmonics remains exceptionally challenging. Here, we demonstrate that high harmonics can be artificially designed and tailored based on a metamaterial route. With the localized reconstruction of magnetic field in a metamaterial, the nonlinear Thomson scattering, a ubiquitous electromagnetic process which people used to believe that it only occurs with the relativistic velocity, can be stimulated in a nonrelativistic limit, which drives anharmonic oscillation of free electrons and generates high harmonics. An explicit physical model and the numerical simulations perfectly demonstrate the artificial generation and tailoring of the high harmonics. This novel mechanism is entirely dominated by the artificial structure instead of the natural nonlinear compositions. It not only provides unprecedented design freedom to the high harmonic generation but breaks the rigorous prerequisite of the relativistic velocity of the nonlinear Thomson scattering process, which offers fascinating possibilities to the development of new light source and ultrafast optics, and opens up exciting opportunities for the advanced understanding of electrodynamics in condensed matters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here