
OBTAINING FILLED POLYURETHANE FOAM WITH IMPROVED OPERATIONAL PROPERTIES
Author(s) -
A. V. Kocherzhenko,
A. V. Kocherzhenko
Publication year - 2019
Publication title -
vestnik bgtu im. v.g. šuhova
Language(s) - English
Resource type - Journals
ISSN - 2071-7318
DOI - 10.34031/article_5cb1e65f6791b0.52319300
Subject(s) - polyurethane , materials science , composite material , exothermic reaction , foaming agent , thermal insulation , composite number , filler (materials) , curing (chemistry) , raw material , chemistry , organic chemistry , layer (electronics) , porosity
One of the most important advantages of polyurethane foam is the ability of single-stage production. Foaming and curing of this heat insulation does not require the supply of heat in connection with the exothermic fusion reaction that occurs when two or more liquid components are mixed, with simultaneous adhering of polyurethane foam to various surfaces due to good adhesion to almost any material. At the same time, this foam polymer has a low density and is able to withstand quite large loads.
Thermal insulation material with improved performance properties can be obtained with a careful selection of the granulometric and chemical composition of raw materials. This paper presents a brief overview of the foaming and shaping of polyurethane, examines the structure of developed composite insulation, and establishes the dependence of the foaming ratio of polyurethane foam on the granulometric composition of fillers, including man-made (waste mining industry Stoylensky GOK). The research results show that in the process of forming filled polyurethane foams, chemical reactions between the components of the polyurethane foam and the elements of the fillers do not occur. The foaming process depends mainly on the granulometry of the filler and its percentage in the total mass of polyurethane foam.