
NEW MODEL OF MACHINE FOR PROCESSING SURFACES OF LARGE-SIZED PARTS HAVING THE SHAPE OF BODIES OF ROTATION
Author(s) -
S. Timofeev,
Dmitry Gavrilov,
Владислав Хуртасенко,
Марина Воронкова
Publication year - 2021
Publication title -
vestnik bgtu im. v.g. šuhova
Language(s) - English
Resource type - Journals
ISSN - 2071-7318
DOI - 10.34031/2071-7318-2021-6-8-94-100
Subject(s) - rigidity (electromagnetism) , machining , rotation (mathematics) , mechanical engineering , machine tool , computer science , process (computing) , position (finance) , quality (philosophy) , engineering drawing , engineering , artificial intelligence , structural engineering , philosophy , finance , epistemology , economics , operating system
During long-term operation of rotating parts of technological machines, which include tires and support rollers of rotary kilns, rolling surfaces lose their shape accuracy and quality. Built-in machine modules are used to restore large-sized parts in the form of bodies of revolution. Such repair work requires special technological approaches and careful preparation before starting. It is necessary to take into account the real geometry of the surface of the part being repaired, which may have shape errors in the longitudinal and cross section due to wear, and conduct a preliminary analysis of the state of the part. It is also necessary to take into account the large dimensions and weight of the workpiece, and the inconsistent position of its axis during rotation. The technologies used and mobile machines for carrying out these repairs still have drawbacks that do not allow for efficient processing and affect the accuracy and quality of the resulting surface. The solution to this problem can be the development of new models of machine tools for processing large-sized bodies of revolution, the design of which will be more perfect in comparison with the previous models. To achieve this goal, it is necessary to study and analyze the existing domestic and foreign models of mobile machines and the principle of their operation. The proposed new machine model should have sufficient static and dynamic rigidity, as well as have a module responsible for adaptive control of the machining process, which will compensate for unstable positioning of parts during machining.