z-logo
open-access-imgOpen Access
ANALYTICAL STUDY OF THE UNLOADING PROCESS OF ELEVATOR BUCKETS
Author(s) -
A. Tihonov,
A. Pol'shin,
N. Lyubimyy,
М. Д. Герасимов
Publication year - 2021
Publication title -
vestnik bgtu im. v.g. šuhova
Language(s) - English
Resource type - Journals
ISSN - 2071-7318
DOI - 10.34031/2071-7318-2021-6-6-71-79
Subject(s) - elevator , slipping , centrifugal force , process (computing) , mechanical engineering , mechanics , work (physics) , movement (music) , computer science , engineering , structural engineering , physics , flow (mathematics) , acoustics , operating system
The purpose of the article is to analyze the main results of the works that are used in the calculations of elevators with moderate speed modes, to clarify the suitability of their individual positions for developing the parameters of centrifugal unloading of high-speed elevators. Works devoted to the study of the operation of high-speed elevators, the results of which have not received a decent interpretation and development, are of considerable interest. As the efficiency of high-speed elevators is determined by the quality of centrifugal unloading and by the operation of the belt-drum mechanism without slipping, there is a need to analyze the work aimed at solving this problem. The paper presents known solutions for determining the parameters of centrifugal unloading, which are based on various hypotheses of the movement of material particles inside the bucket. The physical and mechanical phenomena that affect the movement of material particles in the elevator bucket are studied. The advantages and disadvantages of each hypothesis are revealed. The theoretical study of the process of centrifugal unloading is complicated by the fact that during the movement and exit of the material from the bucket, there is an unstable movement of the bulk material under the influence of a changing system of forces: the forces of attraction, centrifugal and coriolis forces, and the friction force. Meanwhile, even the simplest cases of material motion under a gravitational or mixed discharge regime are difficult to analyze theoretically. In this regard, the dependencies and methods of constructing the trajectories of the material movement are established, as well as the relevance of using a particular equation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here