
EFFECTS OF MECHANICAL VIBRATIONS ON ICE FORMATION ON EVAPORATOR OF AIR HEAT PUMP
Author(s) -
P. Orlov,
Т. Ильина,
K. P. Orlov
Publication year - 2021
Publication title -
vestnik bgtu im. v.g. šuhova
Language(s) - English
Resource type - Journals
ISSN - 2071-7318
DOI - 10.34031/2071-7318-2021-6-6-36-44
Subject(s) - evaporator , heat exchanger , vibration , mechanical engineering , heat pump , condenser (optics) , environmental science , nuclear engineering , materials science , engineering , acoustics , light source , physics , optics
The analysis of the reasons for the insignificant spread of air heat pumps in countries with a cold winter period is carried out. Problems arising in the heat exchanger of the outdoor unit of the heat pump during operation in heating mode are indicated. The existing methods of anti-icing of outdoor units are considered, and their effectiveness is demonstrated, taking into account the cost of electricity and the problem of utilizing condensate. The possibility of removing ice from evaporators of air heat pumps using the method of high-frequency mechanical vibrations has been investigated. Laboratory equipment has been designed and tested for experimental research of high-frequency oscillations in the structures of evaporators manufactured by an industrial method. The possibility of their use in heat pumps, where the fight against frostbite is carried out by the method of mechanical vibrations, is considered. Investigations of evaporators of air heat pumps with different types of coolant for removing ice by means of mechanical vibrations on the surface of the heat exchanger have been carried out. Methods of fastening piezoceramic emitters to evaporators of various designs are considered. A comparative analysis of the materials used in the design of evaporators, a comparison of their acoustic properties and thermal conductivity, and recommendations on the selection of material for further research to improve the efficiency of ice destruction from the surface of evaporators are given. Ways of increasing the degree of cleaning of evaporators from ice are identified, recommendations are given for further research on the use of mechanical vibrations to combat frostbite of heat exchangers in air heat pumps under conditions of operation at low ambient temperatures