
SPECIFIC FEATURES OF THERMAL PROCESSES IN DOUBLE-SIDED FACE GRINDING MACHINES
Author(s) -
I. P. Nikitina,
A. N. Polyakov
Publication year - 2021
Publication title -
vestnik bgtu im. v.g. šuhova
Language(s) - English
Resource type - Journals
ISSN - 2071-7318
DOI - 10.34031/2071-7318-2021-6-1-82-94
Subject(s) - grinding , allowance (engineering) , mechanical engineering , thermal , face (sociological concept) , range (aeronautics) , position (finance) , intensity (physics) , machine tool , computer science , bearing (navigation) , materials science , automotive engineering , engineering , physics , artificial intelligence , optics , composite material , social science , finance , sociology , meteorology , economics
The paper presents an analysis of thermal processes in the bearing system of a double-sided face grinding machine. Experimental data on temperatures and displacements obtained when the machine is idling and when imitating the grinding process with the help of electric heaters of various powers are used for analysis. The performed studies have shown that thermal deformations of double-sided face grinding machines with an arc trajectory of workpiece feed occur in a wide range in magnitude and direction. It can violate the main requirement for the precise operation of the machine - the symmetry of processing conditions at both ends of the workpiece. From the experiments, the absolute value of the non-parallelism of the grinding wheels after three hours of operation is established; it is almost twice the value of the removed allowance. Analysis of the kinetic change in the deformations of the supporting system of the machine tool during operation under thermal load shows that as it warms up, the relative position of the grinding wheels gradually changes from the state "wider at the bottom" to the state "narrower below". This leads to a spontaneous change in the dynamic tuning of the technological system and a corresponding change in the processing accuracy. Changes in the dynamic tuning of the technological system with varying intensity continue throughout the entire operating time of the machine.