z-logo
open-access-imgOpen Access
ROTOR OPERATION IN THE VORTEX LAYER DEVICE
Author(s) -
Dmitrij Titov
Publication year - 2020
Publication title -
vestnik bgtu im. v.g. šuhova
Language(s) - English
Resource type - Journals
ISSN - 2071-7318
DOI - 10.34031/2071-7318-2020-5-3-114-120
Subject(s) - rotor (electric) , vortex , mechanical engineering , layer (electronics) , computer science , process engineering , materials science , engineering , composite material , mechanics , physics
Vortex layer devices can be means of intensification of most processes. It is particularly effective to use these devices to produce rubber products, to accelerate chemical processes, to prepare raw materials in metallurgy, to use them in ore processing processes, to solve environmental problems in wastewater treatment and in many other areas. Such widespread use is possible due to the properties of the vortex layer, which, in addition to mechanical impact, also provides electrochemical effects. The efficiency of traditional devices of this class can be improved by using a new design. This design is characterized by the presence of a rotor in the working area, which actively affects electromagnetic processes. This article is devoted to the study of the rotor operation in the vortex layer device. The research is of a practical nature and consists in studying the operation of an experimental installation. The design of this installation makes it possible to identify patterns in the designated area of research. This is achieved by using easily removable rotors of different diameters, which allow getting a gap between the rotor and the inductor of different sizes. Also, the design of the experimental installation allows to enter a different number of ferromagnetic elements into the active zone. The main evaluation criterion for the study is the coefficient of energy use by the rotor. Estimating the absolute value of this coefficient, a conclusion is drawn about the futility of classical devices for mechanical impact on the product. The results of the study are to determine the dependence of the operating parameters on the gap between the rotor and the inductor, as well as the number of ferromagnetic elements in the device under study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here