z-logo
open-access-imgOpen Access
Lagrangian analysis of sea-ice dynamics in the Arctic Ocean
Author(s) -
S. Szanyi,
Jennifer V. Lukovich,
David G. Barber
Publication year - 2016
Publication title -
polar research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.508
H-Index - 49
eISSN - 1751-8369
pISSN - 0800-0395
DOI - 10.3402/polar.v35.30778
Subject(s) - sea ice , arctic , geology , arctic ice pack , climatology , oceanography
In this study, we present Lagrangian diagnostics to quantify changes in the dynamical characteristics of the Arctic sea-ice cover from 2006 to 2014. Examined in particular is the evolution in finite-time Lyapunov exponents (FTLEs), which monitor the rate at which neighbouring particle trajectories diverge, and stretching rates throughout the Arctic. In this analysis, we compute FTLEs for the Arctic ice-drift field using the 62.5 km daily sea-ice motion vector data from the European Organisation for the Exploitation of Meteorological Satellites Ocean and Sea Ice Satellite Application Facility. Results from the FTLE analysis highlight the existence of three distinct dynamical regions with strong stretching, captured by FTLE maxima or ridges. It is further shown that FTLE ridges are dominated by shear, with contributions from divergence in the Beaufort Sea. Localization of FTLE features following the 2012 record minimum in summertime sea-ice extent illustrates the emergence of an Arctic characterized by increased mixing. Results also demonstrate higher FTLEs in years when lower multi-year ice extent is observed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here