z-logo
open-access-imgOpen Access
Operadores de riesz en el Alglat(T)∩{T}
Author(s) -
Edixo Rosales
Publication year - 2021
Publication title -
revista bases de la ciencia
Language(s) - Spanish
Resource type - Journals
ISSN - 2588-0764
DOI - 10.33936/rev_bas_de_la_ciencia.v6i1.2515
Subject(s) - bounded operator , bounded function , linear subspace , operator (biology) , banach space , mathematics , humanities , combinatorics , physics , pure mathematics , mathematical analysis , biochemistry , chemistry , philosophy , repressor , transcription factor , gene
  En este trabajo X es un espacio de Banach y B(X) denota los operadores acotados. Si T∈B(X), por lat(T) entenderemos los subespacios invariantes por T. Se dice que T es lleno, si (T(M)) ̅=M, para todo M∈lat(T) (la barra indica la clausura en la topología inducida por la norma). Se prueba principalmente el siguiente resultado: Sean X un espacio de Banach y T ∈B(X) acotado por abajo. Sea K ∈Alglat(T)∩{T}' un operador de Riesz. Si K es lleno, entonces T es lleno. Aquí Alglat(T)={S∈B(X):M∈lat(T)⟾M∈lat(S)} y {T}^'={S∈B(X):S∘T=T∘S}.   Palabras clave: Operador lleno, operador de Riesz, operador acotado por abajo.   Abstract In this work X is a Banach space and B(X) denotes the bounded operators. If T ∈B(X), for lat(T) we will understand the invariant subspaces for T. An operator T is full, if (T(M)) ̅=M, for all M∈ latT (the bar indicates the closure in the topology induced by the norm). The following result is true: Let X be a Banach space, T ∈B(X) a bounded below operator and K ∈Alglat(T)∩{T}' a Riesz operator: If K is a full operator, then T is a full operator. Here Alglat(T)={S∈B(X):M∈lat(T)⟾M∈lat(S)} and {T}^'={S∈B(X):S∘T=T∘S}.   Keywords: full operator, Riesz operator, bounded below operator.  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here