
Study on the Mechanical Properties of Fly-Ash-Based Light-Weighted Porous Geopolymer and Its Utilization in Roof-Adaptive End Filling Technology
Author(s) -
Luchang Xiong,
Boyu Fan,
Zhifeng Wan,
Zhaoyang Zhang,
Yuan Zhang,
Peng Shi
Publication year - 2021
Publication title -
molecules/molecules online/molecules annual
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 149
eISSN - 1433-1373
pISSN - 1420-3049
DOI - 10.3390/molecules26154450
Subject(s) - roof , fly ash , materials science , porosity , isotropy , geopolymer , porous medium , deformation (meteorology) , composite material , structural engineering , engineering , physics , quantum mechanics
This paper aims to study the porous structure and the mechanical properties of fly-ash-based light-weighted porous geopolymer (FBLPG), exploring the feasibility of using it in roof-adaptive end filling technology based on its in-situ foaming characteristics and plastic yielding performance. A porous structure model of FBLPG during both the slurry and solid period was established to study their influence factor. In addition, this study also built a planar structure model in the shape of a honeycomb with bore walls, proving that the bore walls possess the characteristics of isotropic force. FBLPG shows a peculiar plastic yielding performance in the experiment where its stress stays stable with the gradual increase of the deformation, which can guarantee the stability of a filling body under the cycled load from the roof. At the same time, the in-situ foaming process combined with the unique filling technique can make the FBLPG filling body fully in contact with the irregular roof. This roof-adaptive end filling technology makes it a successful application in plugging the 1305 working face, which avoids problems of the low tight-connection ratio and secondary air-leakage channel resulted from the traditional filling technology, effectively improving coal production in terms of safety and high efficiency.