Abnormal Functional Connectivity Density in New-Onset Type 1 Diabetes Mellitus Children: A Resting-State Functional Magnetic Resonance Imaging Study
Author(s) -
Kun Liu,
Jiawen Song,
Jiahui Jin,
Xiaoyan Huang,
Xinjian Ye,
Shihan Cui,
Yongjin Zhou,
Xiaozheng Liu,
Wei Chen,
Zhihan Yan,
Xiaoou Shan,
Yuchuan Fu
Publication year - 2020
Publication title -
frontiers in psychiatry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.363
H-Index - 67
ISSN - 1664-0640
DOI - 10.3389/fpsyt.2020.00284
Subject(s) - functional magnetic resonance imaging , cuneus , type 1 diabetes , resting state fmri , medicine , functional connectivity , posterior cingulate , neuroscience , audiology , cardiology , psychology , diabetes mellitus , endocrinology , radiology , precuneus
Type 1 diabetes mellitus (T1DM) causes cognitive changes in children, which may be due to decits in brain functions. It is unclear whether T1DM children will have brain functional changes during the initial stage of the disease. We aimed to investigate the changes in the functional brain network topology in children with new-onset T1DM. In this study, 35 new-onset T1DM children and 33 age-, sex-matched healthy controls underwent resting-state fMRI. The whole brain functional connectivity density (FCD) analysis and seed-based functional connectivity (FC) analysis were performed to investigate the changes in functional brain networks in new-onset T1DM children when compared with the controls. Pearson correlational analysis was used to explore the correlation between FCD value of differential brain areas and clinical variables in T1DM children. Compared with the controls, children with new-onset T1DM exhibited significantly decreased FCDs of the right inferior temporal gyrus (ITG) and the right posterior cingulate cortex (PCC). In the subsequent FC analysis, decreased FC was found between right PCC and right cuneus and increased FC was found between right ITG and left orbital part of inferior frontal gyrus in children with new-onset T1DM compared to the controls. The FCD values of right ITG and PCC did not correlate with HbA1c, blood glucose level before imaging, and full-scale intelligence quotient (IQ) in T1DM children. These results revealed that T1DM affect the functional activity of the immature brain at the initial stage. These findings also indicate a decrease in regional brain function and abnormalities in temporal-frontal and limbic-occipital circuitry in children with new-onset T1DM, and highlight the effects of T1DM on children's brain networks involved in visual process and memory, which may contribute to the cognition impairments observed in children with T1DM.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom