z-logo
open-access-imgOpen Access
A Neuron-Specific Antiviral Mechanism Modulates the Persistent Infection of Rice Rhabdoviruses in Leafhopper Vectors
Author(s) -
Haitao Wang,
Ye Liu,
Lining Mo,
Chenyang Huo,
Ziyao Wang,
Panpan Zhong,
Dongsheng Jia,
Xiaofeng Zhang,
Qian Chen,
Hongyan Chen,
Tàiyún Wèi
Publication year - 2020
Publication title -
frontiers in microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.701
H-Index - 135
ISSN - 1664-302X
DOI - 10.3389/fmicb.2020.00513
Subject(s) - biology , leafhopper , virology , rna interference , vector (molecular biology) , virus , gene knockdown , rna silencing , rna , genetics , recombinant dna , cell culture , gene , hemiptera , botany
Many plant rhabdoviruses are neurotropic and can persistently infect the central nervous system (CNS) of their insect vectors without causing significant cytopathology. The mechanisms by which the insect CNS resists infection by plant rhabdoviruses are largely unknown. Here, we report that the neural factor Hikaru genki homolog of the leafhopper Nephotettix cincticeps (NcHig) limits the spread of the nucleorhabdovirus rice yellow stunt virus (RYSV) in vector CNS. NcHig is predominantly expressed in the CNS of N. cincticeps , and the knockdown of NcHig expression by RNA interference enhances RYSV infection of the CNS. Furthermore, immuno-blockade of NcHig function by microinjection of N. cincticeps with NcHig antibody also enhances viral infection of the CNS. Thus, we conclude that the neuron-specific factor NcHig can control RYSV propagation in the CNS. Interestingly, we find the Hig homolog of the leafhopper Recilia dorsalis also has antiviral activity during the persistent infection of the cytorhabdovirus rice stripe mosaic virus (RSMV) in vector CNS. We further determine that RYSV and RSMV matrix proteins specifically interact with the complement control protein (CCP) domains of Higs. Thus, the matrix protein-binding ability of Hig is potentially essential for its antiviral activity in rice leafhoppers. Our results demonstrate an evolutionarily conserved antiviral mechanism for Hig to mediate the persistent infection of rice rhabdoviruses in the CNS of leafhopper vectors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom