Deepprune: Learning Efficient and Interpretable Convolutional Networks Through Weight Pruning for Predicting DNA-Protein Binding
Author(s) -
Xiao Luo,
Weilai Chi,
Minghua Deng
Publication year - 2019
Publication title -
frontiers in genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.413
H-Index - 81
ISSN - 1664-8021
DOI - 10.3389/fgene.2019.01145
Subject(s) - overfitting , computer science , convolutional neural network , inference , artificial intelligence , machine learning , kernel (algebra) , pruning , deep learning , pattern recognition (psychology) , artificial neural network , biology , mathematics , combinatorics , agronomy
Convolutional neural network (CNN) based methods have outperformed conventional machine learning methods in predicting the binding preference of DNA-protein binding. Although studies in the past have shown that more convolutional kernels help to achieve better performance, visualization of the model can be obscured by the use of many kernels, resulting in overfitting and reduced interpretation because the number of motifs in true models is limited. Therefore, we aim to arrive at high performance, but with limited kernel numbers, in CNN-based models for motif inference. We herein present Deepprune, a novel deep learning framework, which prunes the weights in the dense layer and fine-tunes iteratively. These two steps enable the training of CNN-based models with limited kernel numbers, allowing easy interpretation of the learned model. We demonstrate that Deepprune significantly improves motif inference performance for the simulated datasets. Furthermore, we show that Deepprune outperforms the baseline with limited kernel numbers when inferring DNA-binding sites from ChIP-seq data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom