z-logo
open-access-imgOpen Access
Pulsatile Drug Delivery System Triggered by Acoustic Radiation Force
Author(s) -
Sabrina Ciancia,
Andrea Cafarelli,
Anna Zahoranová,
Arianna Menciassi,
Leonardo Ricotti
Publication year - 2020
Publication title -
frontiers in bioengineering and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.081
H-Index - 44
ISSN - 2296-4185
DOI - 10.3389/fbioe.2020.00317
Subject(s) - pulsatile flow , drug delivery , acoustic radiation force , drug , ultrasound , drug administration , biomedical engineering , computer science , medicine , materials science , pharmacology , nanotechnology , radiology
Since biological systems exhibit a circadian rhythm (24-hour cycle), they are susceptible to the timing of drug administration. Indeed, several disorders require a therapy that synchronizes with the onset of symptoms. A targeted therapy with spatially and temporally precise controlled drug release can guarantee a considerable gain in terms of efficacy and safety of the treatment compared to traditional pharmacological methods, especially for chronotherapeutic disorders. This paper presents a proof of concept of an innovative pulsatile drug delivery system remotely triggered by the acoustic radiation force of ultrasound. The device consists of a case, in which a drug-loaded gel can be embedded, and a sliding top that can be moved on demand by the application of an acoustic stimulus, thus enabling drug release. Results demonstrate for the first time that ultrasound acoustic radiation force (up to 0.1 N) can be used for an efficient pulsatile drug delivery (up to 20 μg of drug released for each shot).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom