z-logo
open-access-imgOpen Access
Untangling Photofaradaic and Photocapacitive Effects in Organic Optoelectronic Stimulation Devices
Author(s) -
Vedran Đerek,
David G. Rand,
Ludovico Migliaccio,
Yael Hanein,
Eric Daniel Głowacki
Publication year - 2020
Publication title -
frontiers in bioengineering and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.081
H-Index - 44
ISSN - 2296-4185
DOI - 10.3389/fbioe.2020.00284
Subject(s) - organic semiconductor , materials science , nanotechnology , context (archaeology) , semiconductor , photothermal therapy , photoexcitation , optoelectronics , flexibility (engineering) , biocompatibility , optogenetics , computer science , biochemical engineering , physics , paleontology , statistics , mathematics , neuroscience , engineering , metallurgy , biology , nuclear physics , excited state
Light, as a versatile and non-invasive means to elicit a physiological response, offers solutions to problems in basic research as well as in biomedical technologies. The complexity and limitations of optogenetic methods motivate research and development of optoelectronic alternatives. A recently growing subset of approaches relies on organic semiconductors as the active light absorber. Organic semiconductors stand out due to their high optical absorbance coefficients, mechanical flexibility, ability to operate in a wet environment, and potential biocompatibility. They could enable ultrathin and minimally invasive form factors not accessible with traditional inorganic materials. Organic semiconductors, upon photoexcitation in an aqueous medium, can transduce light into (1) photothermal heating, (2) photochemical/photocatalytic redox reactions, (3) photocapacitive charging of electrolytic double layers, and (4) photofaradaic reactions. In realistic conditions, different effects may coexist, and understanding their role in observed physiological phenomena is an area of critical interest. This article serves to evaluate the emerging picture of photofaradaic vs. photocapacitive effects in the context of our group’s research efforts and that of others over the past few years. We present simple experiments which can be used to benchmark organic optoelectronic stimulation devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom